Gut bacteria may guard against type 2 diabetes

Dr. Shawn Talbott (Ph.D., CNS, LDN, FACSM, FACN, FAIS) has gone from triathlon struggler to gut-brain guru! With a Ph.D. in Nutritional Biochemistry, he's on a mission to boost everyday human performance through the power of natural solutions and the gut-brain axis.

A friendly microbe in the gut may be the key to staving off insulin resistance, a study in mice finds.
— Read on www.sciencenews.org/article/gut-bacteria-may-guard-against-type-2-diabetes

Losing one variety of gut bacteria may lead to type 2 diabetes as people age.

Old mice have less Akkermansia muciniphilabacteria than young mice do, researchers report November 14 in Science Translational Medicine. That loss triggers inflammation, which eventually leads cells to ignore signals from the hormone insulin. Such disregard for insulin’s message to take in glucose is known as insulin resistance and is a hallmark of type 2 diabetes.

Researchers have suspected that bacteria and other microbes in the gut are involved in aging, but how the microbes influence the process hasn’t been clear. Monica Bodogai of the U.S. National Institute on Aging in Baltimore and colleagues examined what happens to mice’s gut bacteria as the rodents age. The mice lose A. muciniphila, also called Akk, and other friendly microbes that help break down dietary fiber into short-chain fatty acids, such as butyrate and acetate. Those fatty acids signal bacteria and human cells to perform certain functions.

Losing Akk led to less butyrate production, Bodogai’s team found. In turn, loss of butyrate triggered a chain reaction of immune cell dysfunction that ended with mice’s cells ignoring the insulin.

Treating old mice and elderly rhesus macaques with an antibiotic called enrofloxacin increased the abundance of Akk in the animals’ guts and made cells respond to insulin again. Giving old animals butyrate had the same effect, suggesting that there may be multiple ways to head off insulin resistance in older people in the future

About the Author

Exercise physiologist (MS, UMass Amherst) and Nutritional Biochemist (PhD, Rutgers) who studies how lifestyle influences our biochemistry, psychology and behavior - which kind of makes me a "Psycho-Nutritionist"?!?!

{"email":"Email address invalid","url":"Website address invalid","required":"Required field missing"}

Solve the 3 Main Sleep Problems
and Improve Your Sleep Quality
without Drugs or Synthetic Melatonin

>