Advertisements

Microbiome-nervous System Interactions in Health and Disease | Zuckerman Institute

This seminar will be held in the Neurological Institute of New York’s Auditorium (1st floor). Columbia University’s Intercampus Shuttle Service is the best way to travel between campuses.
— Read on zuckermaninstitute.columbia.edu/microbiome-nervous-system-interactions-health-and-disease

The concept of gene-environment interactions, wherein genetic predisposition shapes one’s response to particular environmental exposures, is widely recognized in a variety of neurological disorders, but poorly understood. In particular, how are environmental exposures conveyed to genes, and how do they confer lasting effects on brain and behavior? The microbiota is well positioned at this intersection, as its composition and function are dependent on genetic background and shaped by environmental factors, including infection, diet and drug treatments. Moreover, changes in the microbiota have lasting effects on health and disease. For example, several diet-induced phenotypes are sufficiently mediated by changes in the gut microbiota; symptoms of atherosclerosis in response to a carnitine-rich diet, malnutrition in response to the Malawian diet and obesity in response to the “Western” diet are each recapitulated by transplanting the diet-induced microbiota into mice that are fed standard chow. Here we explore the effects of dietary alterations in the context of genetic susceptibility to neural dysfunction, using the ketogenic diet and epilepsy as a model system. We find that the microbiota is both necessary and sufficient for the anti-seizure effects of the ketogenic diet across two mouse models for refractory epilepsy and further explore molecular and cellular mechanisms underlying microbial modulation of neuronal activity.

The gut microbiota is emerging as an important modulator of brain function and behavior, as several recent discoveries reveal substantial effects of the microbiome on neurophysiology, neurogenesis, blood brain barrier permeability, neuroimmunity, brain gene expression and animal behavior

Advertisements
Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Advertisements
%d bloggers like this: