Movement Modulates Microbiome…

Dr. Shawn Talbott (Ph.D., CNS, LDN, FACSM, FACN, FAIS) has gone from triathlon struggler to gut-brain guru! With a Ph.D. in Nutritional Biochemistry, he's on a mission to boost everyday human performance through the power of natural solutions and the gut-brain axis.

Nice study and commentary from researchers at the University of Illinois about how exercise and fitness/obesity status may modulate changes in the microbiome – and thus alter overall health status via modulation of metabolism via the gut-brain-axis.

Studies are coming out every week showing how our microbiome may be modulated by a variety of lifestyle factors, including diet, age, sleep, stress, medication usage, and recently physical activity and fitness status.

This recent study showed that exercise resulted in an increase in concentrations of beneficial short chain fatty acids (SCFAs) and the genes responsible for their production – and these changes in SCFAs were related to exercise-induced changes in body composition.

 

Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans

ALLEN, JACOB M.1; MAILING, LUCY J.2; NIEMIRO, GRACE M.1; MOORE, RACHEL1; COOK, MARC D.3; WHITE, BRYAN A.4; HOLSCHER, HANNAH D.1,2,5; WOODS, JEFFREY A.1,2

Medicine & Science in Sports & Exercise: April 2018 – Volume 50 – Issue 4 – p 747–757

Purpose 

Exercise is associated with altered gut microbial composition, but studies have not investigated whether the gut microbiota and associated metabolites are modulated by exercise training in humans. We explored the impact of 6 wk of endurance exercise on the composition, functional capacity, and metabolic output of the gutmicrobiota in lean and obese adults with multiple-day dietary controls before outcome variable collection.

Methods 

Thirty-two lean (n = 18 [9 female]) and obese (n = 14 [11 female]), previously sedentary subjects participated in 6 wk of supervised, endurance-based exercise training (3 d·wk?1) that progressed from 30 to 60 min·d?1 and from moderate (60% of HR reserve) to vigorous intensity (75% HR reserve). Subsequently, participants returned to a sedentary lifestyle activity for a 6-wk washout period. Fecal samples were collected before and after 6 wk of exercise, as well as after the sedentary washout period, with 3-d dietary controls in place before each collection.

Results 

?-diversity analysis revealed that exercise-induced alterations of the gut microbiota were dependent on obesity status. Exercise increased fecal concentrations of short-chain fatty acids in lean, but not obese, participants. Exercise-induced shifts in metabolic output of the microbiota paralleled changes in bacterial genes and taxa capable of short-chain fatty acid production. Lastly, exercise-induced changes in the microbiota were largely reversed once exercise training ceased.

Conclusion 

These findings suggest that exercise training induces compositional and functional changes in the human gut microbiota that are dependent on obesity status, independent of diet and contingent on the sustainment of exercise.

About the Author

Exercise physiologist (MS, UMass Amherst) and Nutritional Biochemist (PhD, Rutgers) who studies how lifestyle influences our biochemistry, psychology and behavior - which kind of makes me a "Psycho-Nutritionist"?!?!

{"email":"Email address invalid","url":"Website address invalid","required":"Required field missing"}

Solve the 3 Main Sleep Problems
and Improve Your Sleep Quality
without Drugs or Synthetic Melatonin

>